Composite Functions

Given two functions, combine them in a way such that the outputs of one function become the inputs for the other, making it a composite function.

$$(f \circ g)(x) = f(g(x))$$
 OR $(f \circ g)(x) = f$ "composed of" g

Evaluating Composite Functions

Evaluate the function on the right side, and then substitute that result into the other function to find the answer.

Example: Given f(x) = 5x - 3 and $g(x) = x^2$, find $(f \circ g)(3)$.

Solutions:

Step 1: Set up the equation and start from the right side.

$$(f \circ g)(3) = f(g(3))$$
Notice (3) g is the input for $f(x)$, so start by solving for $g(3)$.

Given
$$g(x) = x^2$$
:
 $g(3) = (3)^2$
 $g(3) = 9$

Step 2: Now substitute the answer for g(3) into f(x).

$$f(g(3)) = f(9)$$

Given
$$f(x) = 5x - 3$$
:
 $f(9) = 5(9) - 3$
 $f(9) = 42$

$$_{SO}(f\circ g)(3)=_{\mathbf{42}}$$

Notice
$$f(x)$$
 is the input for $g(x)$, $g(x^2 + 4) = so start$ $\frac{x}{(x^2 + 4)}$ with $f(x)$.

Given
$$f(x) = x^2 + 4$$
:
 $g(f(x)) = g(x^2 + 4)$
So $g(f(x)) = \frac{1}{x^2 + 4}$

Example: Given
$$f(x) = x^2 + 2x - 3$$
 and $g(x) = x + 1$ find $f(g(x))$.

Solution:

Since f(g(x)) uses g(x) as the input for f, substitute x + 1 for g(x) and simplify.

Finding the Composite Function

To compose two functions, redefine the composition by using the definition to find f(g(x)) or g(f(x)).

Example: Given
$$f(x) = x^2 + 4$$
 and $g(x) = x_1$, find $(g \circ f)(x)$.

Solution:

Step 1: Set up the function using the definition.

$$(g \circ f)(x) = g(f(x))$$

Step 1: Substitute.
 $f(g(x)) = f(x+1)$
 $f(x+1) = (x+1)^2 + 2(x+1) - 3$

Step 2: Now substitute $x^2 + 4$ into g(x) for every x. Simplify as needed.

Given
$$g(x)$$
 = :
Step 2: Simplify.
 $f(x+1) = (x^2 + 2x + 1) + 2x + 2 - 3$
 $f(x+1) = x^2 + 4x$

Practice Exercises:

- 1. Given f(x) = 2x 6 and $g(x) = x^2 + 3$, find g(f(x)).
- 2. Given f(x) = 4 x and $g(x) = x^3 1$, find $(f \circ g)(x)$.
- 3. Given f(x) = 3x + 4 and g(x) = 2x, find $(f \circ g)(5)$.
- 4. Given f(x) = x + 7 and $g(x) = \frac{1}{x^2 1}$ find g(f(2)).

Answers:

1.
$$g(f(x)) = 4x^2 - 24x + 39$$
 3. $f(g(5)) = 34$

2.
$$f(g(x)) = 5 - x^3$$
 4. $g(f(2)) = \frac{1}{80}$