Slope-Intercept Form and Point-Slope Form

Slope of the line	$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}$
Slope-Intercept Form	y = mx + b m is slope; b is y-intercept
Point-Slope Form	$y = m(x - x_1) + y_1$ or $y - y_1 = m(x - x_1)$
Slope of parallel lines	$m_1 = m_2$ (slopes are the same)
Slope of perpendicular lines	$m_1 m_2 = -1$ (slopes are opposite & reciprocal)
Equations of Horizontal and Vertical Lines	y = b horizontal line $x = a$ vertical line, where $a & b$ are constants
	$\alpha = \alpha$ vertical line, where $\alpha \otimes b$ are constants

Example (1): Write the slope - intercept equation of a line which passes through (0,-7) whose slope is 2.

Solution:

Slope-intercept equation is y = mx + b. What we need to complete this equation are <u>slope</u> (m) & <u>y-intercept</u> (0,b), and the problem provides both information.

$$m = 2$$
 and $b = -7$ The equation of the line is $y = 2x - 7$

Example (2): Write the slope-intercept equation of a line which passes through (0,4) and $\begin{pmatrix} x_2, y_2 \\ (3,-5) \end{pmatrix}$.

Solution:

Slope-intercept equation is y = mx + b. What we need to complete this equation are <u>slope</u> (m) & <u>y-intercept</u> (0,b), however, we only have <u>y-intercept</u>.

To find the slope,
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-5 - 4}{3 - 0} = \frac{-9}{3} = -3$$

 $m = -3$ and $b = 4$ The equation of the line is $y = -3x + 4$

Example (3): Write the slope-intercept equation of a line which passes through (-1,4) whose slope is 5.

Solution:

Slope-intercept equation is y = mx + b. What we need to complete this equation are <u>slope</u> (m) & <u>y-intercept</u> (0,b), however, we only have <u>slope</u>. Here there are two ways to find the equation of the line.

Method I We will substitute m and (x_1, y_1) in the form y = mx + b to solve for b. m = 5, $(x_1, y_1) = (-1,4)$ 4 = 5(-1) + b

$$=> b = 9$$

The equation of the line is y = 5x + 9

Method II Since we are given slope m and an ordered pair (x_1, y_1) , we can use Point-slope form to find equation of the line.

Point-slope form is $y = m(x - x_1) + y_1$ y = 5(x - (-1)) + 4m = 5, $(x_1, y_1) = (-1, 4)$ $\Rightarrow y = 5(x + 1) + 4$ Simplify the parenthesis $\Rightarrow y = 5x + 5 + 4$ Distribute 5 into parenthesis $\Rightarrow y = 5x + 9$

Example (4): Write the slope-intercept equation of a line which passes through (1,3) and $\begin{pmatrix} x_2, y_2 \\ -5, -1 \end{pmatrix}$.

Solution:

Slope-intercept equation is y = mx + b. What we need to complete this equation are <u>slope</u> (m) & <u>y-intercept</u> (0,b). However, we are given two ordered pairs (x_1,y_1) and (x_2,y_2) without slope and y-intercept. Therefore, we need to find the slope first. Then we can use the two methods discussed on Example (3) to find the equation of the line.

$$(x_1, y_1) \qquad (x_2, y_2)$$

To find the slope between two ordered pairs, (1,3) and (-5,-1) $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 3}{-5 - 1} = \frac{-4}{-6} = \frac{2}{3}$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 3}{-5 - 1} = \frac{-4}{-6} = \frac{2}{3}$$

Method I Now we have slope, we will substitute m and (x_1, y_1) in the form y = mx + b to solve for b.

$$m = \frac{2}{3}$$
, $(x_1, y_1) = (1,3)$ $3 = \frac{2}{3}(1) + b$

$$=> b = \frac{7}{3}$$

The equation of the line is $y = \frac{2}{3}x + \frac{7}{3}$

Method II We also can use Point-slope form to find the equation of the line.

Point-slope form is
$$y = m(x - x_1) + y_1$$
 $y = \frac{2}{3}(x - 1) + 3$ $y = \frac{2}{3}(x - 1) + 3$ $y = \frac{2}{3}x - \frac{2}{3} + 3$ Distribute $\frac{2}{3}$ into parenthesis $y = y = \frac{2}{3}x - \frac{2}{3} + \frac{9}{3}$ Combine like term $y = \frac{2}{3}x + \frac{7}{3}$

Example (5): Write the slope-intercept equation of a line which is parallel to y = 4x - 2, passing through (1,3).

Solution:

Slope-intercept equation is y = mx + b. What we need to complete this equation are slope (m) & <u>y-intercept</u> (0,b). Since the line we're looking for is **parallel** to y=4x-2, their slopes are the same, m=4.

Method I We will substitute m and (x_1, y_1) in the form y = mx + b to solve for b. m = 4, $(x_1, y_1) = (1,3)$ $3 = 4(1) + b \implies b = -1$

The equation of the line is y = 4x - 1

Method II We also can use Point-slope form to find the equation of the line.

Point-slope form is
$$y = m(x - x_1) + y_1$$
 $y = 4(x - 1) + 3$ $y = 4(x - 1) + 3$ $y = 4x - 4 + 3$ Distribute 4 into parenthesis $y = 4x - 4 + 3$ Distribute 4 into parenthesis

Example (6): Write the slope-intercept equation of a line which is perpendicular to $y = -\frac{1}{3}x + 4$, passing through (-3,5).

Solution:

Slope-intercept equation is y = mx + b. What we need to complete this equation are the slope (m) & y-intercept (0,b). Since our line is **perpendicular** to $y = -\frac{1}{3}x + 4$ (which was given), we can find the slope of our line by **taking the opposite sign and using the reciprocal of the given line** which has a slope of $m = -\frac{1}{3}$. Therefore, **the slope of our line is** m = 3 (the perpendicular one to the given line)

Method I We will substitute
$$m$$
 and (x_1, y_1) in the form $y = mx + b$ to solve for b .

 $m = 3$, $(x_1, y_1) = (-3.5)$
 $5 = 3(-3) + b$
 $\Rightarrow 5 = -9 + b$
 $\Rightarrow b = 14$

The equation of the line is y = 3x + 14

Method II We also can use Point-slope form to find the equation of the line.

Point-slope form is
$$y = m(x - x_1) + y_1$$
 $y = 3(x - (-3)) + 5$ $y = 3(x + 3) + 5$ Simplify the parenthesis $y = 3x + 9 + 5$ Distribute 5 into parenthesis $y = 3x + 9 + 5$ Distribute 5 into parenthesis

Example (7): Write an equation of a vertical line which passes through (-1.6).

Solution:

The equation of a vertical line is x = a

The x-coordinate of the point (-1,6) is -1. Therefore, the equation of the vertical line is x = -1

Example (8): Write an equation of a horizontal line which passes through $\left(\frac{3}{4}, -\frac{5}{6}\right)$.

Solution:

The equation of a horizontal line is y = b

The y-coordinate of the point $\left(\frac{3}{4}, -\frac{5}{6}\right)$ is $-\frac{5}{6}$. Therefore, the equation of the horizontal line is $y = -\frac{5}{6}$.

Exercises:

- 1. Write the slope intercept equation of a line which passes through (0,5) whose slope is 4.
- 2. Write the slope-intercept equation of a line which passes through (0,-3) and (4,5).
- 3. Write the slope-intercept equation of a line which passes through (4,0) and (7,-1).
- **4.** Write the slope-intercept equation of a line which is parallel to y = 3x + 5, passing through (-6.3)
- 5. Write the slope-intercept equation of a line which is perpendicular to y = 7x + 2, passing through (3,2)
- **6.** Write an equation of a horizontal line which passes through (5,-1)
- 7. Write an equation of a vertical line which passes through $\left(8, \frac{7}{3}\right)$.

Answers:

1.
$$y = 4x + 5$$
 2. $y = 2x - 3$ **3.** $y = -\frac{1}{3}x + \frac{4}{3}$ **4.** $y = 3x + 21$ **5.** $y = -\frac{1}{7}x + \frac{17}{7}$

$$3. \quad y = -\frac{1}{3}x + \frac{4}{3}$$

4.
$$y = 3x + 21$$

$$5. \quad y = -\frac{1}{7}x + \frac{17}{7}$$

6.
$$y = -1$$
 7. $x = 8$

7.
$$x = 8$$